Radar Absorbent Material - definição. O que é Radar Absorbent Material. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Radar Absorbent Material - definição

RAM TECHNOLOGY
Iron ball paint; Radar Absorbant Material; Radar Absorbent Material; Radar-absorbing materials; Jaumann layer; Radar Absorbing Material; Radar absorbing material; Jaumann absorber; Radar absorbent material; Radar-absorbing material; Radar-absorbent; Radar-absorbent material
  • Pyramid RAM. The grey paint helps to protect the delicate radiation-absorbent material.
  • [[Lockheed F-117 Nighthawk]] utilises iron ball paint
  • A large drive-in RF anechoic test chamber. Note the orange caution cones for size reference.
  • An RF anechoic chamber used for EMC testing.

Radiation-absorbent material         
Radiation-absorbent material, usually known as RAM, is a material which has been specially designed and shaped to absorb incident RF radiation (also known as non-ionising radiation), as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation.
radar         
  • 3D Doppler radar spectrum showing a [[Barker code]] of 13
  • A [[Chain Home]] tower in Great Baddow, Essex, United Kingdom
  • Change of [[wavelength]] caused by motion of the source
  • Experimental radar antenna, US [[Naval Research Laboratory]], Anacostia, D. C., from the late 1930s (photo taken in 1945)
  • AS-3263/SPS-49(V) antenna (US Navy)
  • echoes]] from a target cause ghosts to appear.
  • [[Phased array]]: Not all radar antennas must rotate to scan the sky.
  • Pulse-Doppler signal processing. The ''Range Sample'' axis represents individual samples taken in between each transmit pulse. The ''Range Interval'' axis represents each successive transmit pulse interval during which samples are taken. The Fast Fourier Transform process converts time-domain samples into frequency domain spectra. This is sometimes called the ''bed of nails''.
  • Echo heights above ground<br /><math>H=\left (\sqrt{r^{2}+(k_{e}a_{e})^{2}+2rk_{e}a_{e}sin(\theta _{e})} \right )-k_{e}a_{e}+h_{a}</math> <br />Where : <br />&nbsp;&nbsp;r : distance radar-target <br />ke : 4/3 <br />ae : Earth radius <br />θe : elevation angle above the radar horizon <br />ha : height of the feedhorn above ground
  • Slotted waveguide antenna
  • Radar components
  • Pulse radar: The round-trip time for the radar pulse to get to the target and return is measured. The distance is proportional to this time.
  • Commercial marine radar antenna. The rotating antenna radiates a vertical fan-shaped beam.
  • Surveillance radar antenna
  • Continuous wave (CW) radar. Using frequency modulation allows range to be extracted.
  • The first workable unit built by [[Robert Watson-Watt]] and his team
  • Memorial plaque commemorating Robert Watson-Watt and [[Arnold Wilkins]]
OBJECT DETECTION SYSTEM BASED ON RADIO WAVES
Radio detection and ranging; Airport radar; Radars; RADAR; Radio detecting and ranging; Radar illumination; Radio Detection and Ranging; Radar Homing and Warning; Radar station; Coherent processing interval; Radar system; Microwave radar; Fill pulse; Radar equation; Centimetric radar; Coherent Processing Interval; Radar distance measurement; Radar communication; Air search radar; Radar systems; Remote Radar Head; Applications of radar; Palmer Scan; Radar signal processing; Derax; Radar antenna design
n. early-warning radar
radar         
  • 3D Doppler radar spectrum showing a [[Barker code]] of 13
  • A [[Chain Home]] tower in Great Baddow, Essex, United Kingdom
  • Change of [[wavelength]] caused by motion of the source
  • Experimental radar antenna, US [[Naval Research Laboratory]], Anacostia, D. C., from the late 1930s (photo taken in 1945)
  • AS-3263/SPS-49(V) antenna (US Navy)
  • echoes]] from a target cause ghosts to appear.
  • [[Phased array]]: Not all radar antennas must rotate to scan the sky.
  • Pulse-Doppler signal processing. The ''Range Sample'' axis represents individual samples taken in between each transmit pulse. The ''Range Interval'' axis represents each successive transmit pulse interval during which samples are taken. The Fast Fourier Transform process converts time-domain samples into frequency domain spectra. This is sometimes called the ''bed of nails''.
  • Echo heights above ground<br /><math>H=\left (\sqrt{r^{2}+(k_{e}a_{e})^{2}+2rk_{e}a_{e}sin(\theta _{e})} \right )-k_{e}a_{e}+h_{a}</math> <br />Where : <br />&nbsp;&nbsp;r : distance radar-target <br />ke : 4/3 <br />ae : Earth radius <br />θe : elevation angle above the radar horizon <br />ha : height of the feedhorn above ground
  • Slotted waveguide antenna
  • Radar components
  • Pulse radar: The round-trip time for the radar pulse to get to the target and return is measured. The distance is proportional to this time.
  • Commercial marine radar antenna. The rotating antenna radiates a vertical fan-shaped beam.
  • Surveillance radar antenna
  • Continuous wave (CW) radar. Using frequency modulation allows range to be extracted.
  • The first workable unit built by [[Robert Watson-Watt]] and his team
  • Memorial plaque commemorating Robert Watson-Watt and [[Arnold Wilkins]]
OBJECT DETECTION SYSTEM BASED ON RADIO WAVES
Radio detection and ranging; Airport radar; Radars; RADAR; Radio detecting and ranging; Radar illumination; Radio Detection and Ranging; Radar Homing and Warning; Radar station; Coherent processing interval; Radar system; Microwave radar; Fill pulse; Radar equation; Centimetric radar; Coherent Processing Interval; Radar distance measurement; Radar communication; Air search radar; Radar systems; Remote Radar Head; Applications of radar; Palmer Scan; Radar signal processing; Derax; Radar antenna design
¦ noun a system for detecting the presence, direction, and speed of aircraft, ships, etc., by sending out pulses of radio waves which are reflected off the object back to the source.
Origin
1940s: from ra(dio) d(etection) a(nd) r(anging).

Wikipédia

Radiation-absorbent material

In materials science, radiation-absorbent material, usually known as RAM, is a material which has been specially designed and shaped to absorb incident RF radiation (also known as non-ionising radiation), as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation. Many measurements in electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing measurement errors and ambiguities.